## Ni-Tb (Nickel-Terbium)

H. Okamoto

The Ni-Tb phase diagram was not included in [Massalski2] due to lack of data.

Two Ni-Tb phase diagrams were reported in 2004, first by [2004Ron] (Fig. 1) and then by [2004Yao] (Fig. 2). The

data points in Fig. 1 were obtained by differential thermal analysis (DTA) and electromotive force (EMF) measurements, and the phase boundaries were determined by thermodynamic optimization. The data points in Fig. 2 were

Table 1 Ni-Tb Crystal structure data [Massalski2]

| Phase                           | Composition, at.% Tb | Pearson symbol | Space<br>group       | Strukturbericht designation | Prototype                       |
|---------------------------------|----------------------|----------------|----------------------|-----------------------------|---------------------------------|
| (Ni)                            | 0                    | cF4            | $Fm\overline{3}m$    | A1                          | Cu                              |
| $Ni_{17}Tb_2$                   | 10.5                 | hP38           | $P6_3/mmc$           |                             | $Th_2Ni_{17}$                   |
| Ni <sub>5</sub> Tb              | 16.7                 | hP6            | P6/mmc               | $D2_{ m d}$                 | CaCu <sub>5</sub>               |
| $Ni_7Tb_2$                      | 22.2                 | hR54           | $R\overline{3}m$     |                             | $Gd_2Co_7$                      |
|                                 |                      | hP36           | $P6_3/mmc$           |                             | Ce <sub>2</sub> Ni <sub>7</sub> |
| Ni <sub>3</sub> Tb              | 25                   | hR24           | $R\overline{3}m$     |                             | PuNi <sub>3</sub>               |
| Ni <sub>2</sub> Tb              | 33.3                 | cF24           | $Fd\overline{3}m$    | C15                         | Cu <sub>2</sub> Mg              |
| NiTb                            | 50                   | oP24           | Pnma                 |                             |                                 |
|                                 |                      | mP24           | $P2_1/m$             |                             |                                 |
|                                 |                      | oC8            | Стст                 | $B_{ m f}$                  | CrB                             |
| Ni <sub>2</sub> Tb <sub>3</sub> | 60                   | mC20           | C2/m                 | •                           | $Dy_3Ni_2$                      |
| NiTb <sub>3</sub>               | 75                   | oP16           | Pnma                 | $D0_{11}$                   | Fe <sub>3</sub> C               |
| (βTb)                           | 100                  | cI2            | $Im\overline{3}m$    | A2                          | W                               |
| (\alpha Tb)                     | 100                  | hP2            | P6 <sub>3</sub> /mmc | <i>A</i> 3                  | Mg                              |

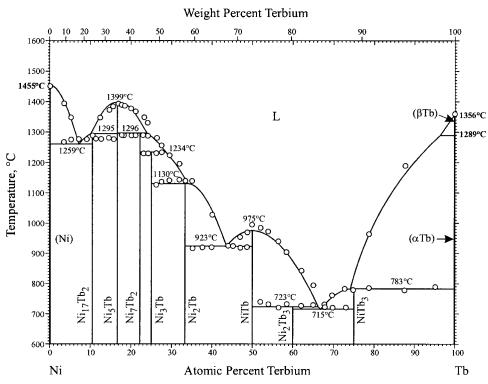



Fig. 1 Ni-Tb phase diagram reported by [2004Ron]

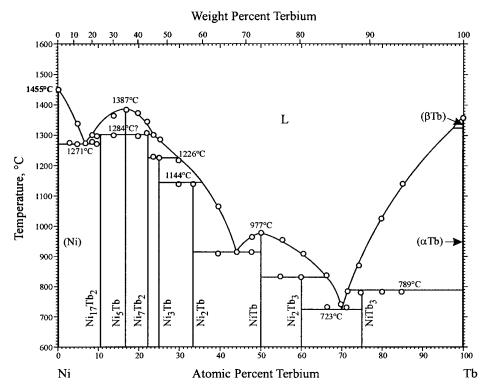



Fig. 2 Ni-Tb phase diagram reported by [2004Yao]

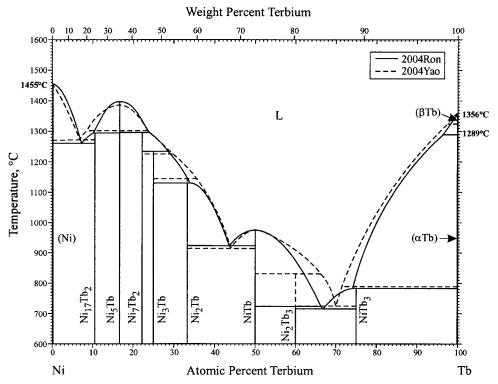



Fig. 3 Comparison of Fig. 1 and 2

obtained by DTA. In Fig. 2, the peritectic formation temperatures of  $Ni_{17}Tb_2$  and  $Ni_7Tb_2$  are both labeled 1284 °C, but on the outside temperature scale they appear as ~1304 °C .

These two phase diagrams are compared in Fig. 3. General trends are in good agreement, but a substantial (>100 °C) difference is observed in the peritectic formation temperature of Ni<sub>2</sub>Tb<sub>3</sub>.

Table 1 shows Ni-Tb crystal structure data given in [Massalski2].

## References

**2004Ron:** Q. Rong and H.J. Schaller, On the Constitution and Thermodynamics of Ni-Tb Alloys, *J. Alloys Compd.*, Vol 365, 2004, p 188-196

**2004Yao:** Q. Yao, H. Zhou, and Y. Wang, Tb-Ni Binary Alloy Phase Diagram, *The 12th National Symposium on Phase Diagram, Materials, Design, and Their Applications*, China, 2004, p 177-179 (in Chinese)